Retinazone inhibits certain blood-borne human viruses including Ebola virus Zaire.

نویسندگان

  • Andreas J Kesel
  • Zhuhui Huang
  • Michael G Murray
  • Mark N Prichard
  • Laura Caboni
  • Daniel K Nevin
  • Darren Fayne
  • David G Lloyd
  • Mervi A Detorio
  • Raymond F Schinazi
چکیده

BACKGROUND Human HBV and HIV integrate their retro-transcribed DNA proviruses into the human host genome. Existing antiretroviral drug regimens fail to directly target these intrachromosomal xenogenomes, leading to persistence of viral genetic information. Retinazone (RTZ) constitutes a novel vitamin A-derived (retinoid) thiosemicarbazone derivative with broad-spectrum antiviral activity versus HIV, HCV, varicella-zoster virus and cytomegalovirus. METHODS The in vitro inhibitory action of RTZ on HIV-1 strain LAI, human HBV strain ayw, HCV-1b strain Con1, enhanced green fluorescent protein-expressing Ebola virus Zaire 1976 strain Mayinga, wild-type Ebola virus Zaire 1976 strain Mayinga, human herpesvirus 6B and Kaposi's sarcoma-associated herpesvirus replication was investigated. The binding of RTZ to human glucocorticoid receptor was determined. RESULTS RTZ inhibits blood-borne human HBV multiplication in vitro by covalent inactivation of intragenic and intraexonic viral glucocorticoid response elements, and, in close analogy, RTZ suppresses HIV-1 multiplication in vitro. RTZ disrupts the multiplication of blood-borne human HCV and Ebola Zaire virus at nanomolar concentrations in vitro. RTZ has the capacity to bind to human glucocorticoid receptor, to selectively and covalently bind to intraexonic viral glucocorticoid response elements, and thereby to inactivate human genome-integrated proviral DNA of human HBV and HIV. CONCLUSIONS RTZ represents the first reported antiviral agent capable of eradicating HIV and HBV proviruses from their human host. Furthermore, RTZ represents a potent and efficacious small-molecule in vitro inhibitor of Ebola virus Zaire 1976 strain Mayinga replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses.

Since the Marburg (MBG) and Ebola (EBO) viruses have sequence homology and cause similar diseases, we hypothesized that they associate with target cells by similar mechanisms. Pseudotype viruses prepared with a luciferase-containing human immunodeficiency virus type 1 backbone and packaged by the MBG virus or the Zaire subtype EBO virus glycoproteins (GP) mediated infection of a comparable wide...

متن کامل

Complete Genome Sequences of Three Ebola Virus Isolates from the 2014 Outbreak in West Africa

Here, we report the complete genome sequences, including the genome termini, of three Ebola virus isolates (species Zaire ebolavirus) originating from Guinea that are now being widely used in laboratories in North America for research regarding West African Ebola viruses.

متن کامل

Emergence of subtype Zaire Ebola virus in Gabon.

Gabon has recently been struck three times by Ebola hemorrhagic fever. The first isolate originating from the 1994 outbreak has been subjected to molecular characterization of its GP and VP24 genes. Sequence analysis demonstrates that the agent, Gabon-94 virus, belongs to subtype Zaire of Ebola virus. The isolate is closely related to the Kikwit-95 isolate, and both viruses seem to have evolved...

متن کامل

Reemergence of Ebola virus in Africa.

Members of the family Filoviridae, which currently consists of Ebola and Marburg viruses, cause severe and often fatal hemorrhagic fevers in humans and nonhuman primates. The recent isolation and identification of a new Ebola virus from a single nonfatal human case in Côte d’Ivoire (1) and the more recent outbreak of Ebola hemorrhagic fever in and around Kikwit, Zaire (2, 3), have raised concer...

متن کامل

Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1.

The Zaire ebolavirus protein VP24 was previously demonstrated to inhibit alpha/beta interferon (IFN-alpha/beta)- and IFN-gamma-induced nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1) and to inhibit IFN-alpha/beta- and IFN-gamma-induced gene expression. These properties correlated with the ability of VP24 to interact with the nuclear localization signal receptor for PY-STAT1, ka...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antiviral chemistry & chemotherapy

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2014